Copied to
clipboard

G = C22×D4⋊C4order 128 = 27

Direct product of C22 and D4⋊C4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C22×D4⋊C4, C23.61D8, C24.189D4, C23.46SD16, (C23×C8)⋊5C2, C4⋊C411C23, (C2×C8)⋊13C23, D44(C22×C4), C4.1(C23×C4), C2.1(C22×D8), (C22×D4)⋊26C4, C22.67(C2×D8), (C2×C4).171C24, (C22×C8)⋊62C22, (D4×C23).15C2, C4.136(C22×D4), (C22×C4).600D4, C23.836(C2×D4), C2.1(C22×SD16), (C2×D4).357C23, C22.78(C2×SD16), (C23×C4).688C22, C22.121(C22×D4), C23.232(C22⋊C4), (C22×C4).1495C23, (C22×D4).550C22, (C2×D4)⋊46(C2×C4), (C22×C4⋊C4)⋊31C2, C4.71(C2×C22⋊C4), (C2×C4⋊C4)⋊112C22, (C2×C4).1402(C2×D4), (C2×C4).456(C22×C4), (C22×C4).413(C2×C4), C2.33(C22×C22⋊C4), (C2×C4).282(C22⋊C4), C22.136(C2×C22⋊C4), SmallGroup(128,1622)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C22×D4⋊C4
C1C2C22C2×C4C22×C4C23×C4D4×C23 — C22×D4⋊C4
C1C2C4 — C22×D4⋊C4
C1C24C23×C4 — C22×D4⋊C4
C1C2C2C2×C4 — C22×D4⋊C4

Generators and relations for C22×D4⋊C4
 G = < a,b,c,d,e | a2=b2=c4=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=ece-1=c-1, ede-1=cd >

Subgroups: 1148 in 536 conjugacy classes, 220 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, D4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22×C8, C23×C4, C23×C4, C22×D4, C22×D4, C25, C2×D4⋊C4, C22×C4⋊C4, C23×C8, D4×C23, C22×D4⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C24, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C23×C4, C22×D4, C2×D4⋊C4, C22×C22⋊C4, C22×D8, C22×SD16, C22×D4⋊C4

Smallest permutation representation of C22×D4⋊C4
On 64 points
Generators in S64
(1 36)(2 33)(3 34)(4 35)(5 40)(6 37)(7 38)(8 39)(9 32)(10 29)(11 30)(12 31)(13 26)(14 27)(15 28)(16 25)(17 24)(18 21)(19 22)(20 23)(41 63)(42 64)(43 61)(44 62)(45 59)(46 60)(47 57)(48 58)(49 55)(50 56)(51 53)(52 54)
(1 16)(2 13)(3 14)(4 15)(5 58)(6 59)(7 60)(8 57)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)(25 36)(26 33)(27 34)(28 35)(37 45)(38 46)(39 47)(40 48)(41 49)(42 50)(43 51)(44 52)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 15)(2 14)(3 13)(4 16)(5 60)(6 59)(7 58)(8 57)(9 20)(10 19)(11 18)(12 17)(21 30)(22 29)(23 32)(24 31)(25 35)(26 34)(27 33)(28 36)(37 45)(38 48)(39 47)(40 46)(41 49)(42 52)(43 51)(44 50)(53 61)(54 64)(55 63)(56 62)
(1 60 11 56)(2 59 12 55)(3 58 9 54)(4 57 10 53)(5 17 62 14)(6 20 63 13)(7 19 64 16)(8 18 61 15)(21 43 28 39)(22 42 25 38)(23 41 26 37)(24 44 27 40)(29 51 35 47)(30 50 36 46)(31 49 33 45)(32 52 34 48)

G:=sub<Sym(64)| (1,36)(2,33)(3,34)(4,35)(5,40)(6,37)(7,38)(8,39)(9,32)(10,29)(11,30)(12,31)(13,26)(14,27)(15,28)(16,25)(17,24)(18,21)(19,22)(20,23)(41,63)(42,64)(43,61)(44,62)(45,59)(46,60)(47,57)(48,58)(49,55)(50,56)(51,53)(52,54), (1,16)(2,13)(3,14)(4,15)(5,58)(6,59)(7,60)(8,57)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32)(25,36)(26,33)(27,34)(28,35)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(43,51)(44,52)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15)(2,14)(3,13)(4,16)(5,60)(6,59)(7,58)(8,57)(9,20)(10,19)(11,18)(12,17)(21,30)(22,29)(23,32)(24,31)(25,35)(26,34)(27,33)(28,36)(37,45)(38,48)(39,47)(40,46)(41,49)(42,52)(43,51)(44,50)(53,61)(54,64)(55,63)(56,62), (1,60,11,56)(2,59,12,55)(3,58,9,54)(4,57,10,53)(5,17,62,14)(6,20,63,13)(7,19,64,16)(8,18,61,15)(21,43,28,39)(22,42,25,38)(23,41,26,37)(24,44,27,40)(29,51,35,47)(30,50,36,46)(31,49,33,45)(32,52,34,48)>;

G:=Group( (1,36)(2,33)(3,34)(4,35)(5,40)(6,37)(7,38)(8,39)(9,32)(10,29)(11,30)(12,31)(13,26)(14,27)(15,28)(16,25)(17,24)(18,21)(19,22)(20,23)(41,63)(42,64)(43,61)(44,62)(45,59)(46,60)(47,57)(48,58)(49,55)(50,56)(51,53)(52,54), (1,16)(2,13)(3,14)(4,15)(5,58)(6,59)(7,60)(8,57)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32)(25,36)(26,33)(27,34)(28,35)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(43,51)(44,52)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15)(2,14)(3,13)(4,16)(5,60)(6,59)(7,58)(8,57)(9,20)(10,19)(11,18)(12,17)(21,30)(22,29)(23,32)(24,31)(25,35)(26,34)(27,33)(28,36)(37,45)(38,48)(39,47)(40,46)(41,49)(42,52)(43,51)(44,50)(53,61)(54,64)(55,63)(56,62), (1,60,11,56)(2,59,12,55)(3,58,9,54)(4,57,10,53)(5,17,62,14)(6,20,63,13)(7,19,64,16)(8,18,61,15)(21,43,28,39)(22,42,25,38)(23,41,26,37)(24,44,27,40)(29,51,35,47)(30,50,36,46)(31,49,33,45)(32,52,34,48) );

G=PermutationGroup([[(1,36),(2,33),(3,34),(4,35),(5,40),(6,37),(7,38),(8,39),(9,32),(10,29),(11,30),(12,31),(13,26),(14,27),(15,28),(16,25),(17,24),(18,21),(19,22),(20,23),(41,63),(42,64),(43,61),(44,62),(45,59),(46,60),(47,57),(48,58),(49,55),(50,56),(51,53),(52,54)], [(1,16),(2,13),(3,14),(4,15),(5,58),(6,59),(7,60),(8,57),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32),(25,36),(26,33),(27,34),(28,35),(37,45),(38,46),(39,47),(40,48),(41,49),(42,50),(43,51),(44,52),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,15),(2,14),(3,13),(4,16),(5,60),(6,59),(7,58),(8,57),(9,20),(10,19),(11,18),(12,17),(21,30),(22,29),(23,32),(24,31),(25,35),(26,34),(27,33),(28,36),(37,45),(38,48),(39,47),(40,46),(41,49),(42,52),(43,51),(44,50),(53,61),(54,64),(55,63),(56,62)], [(1,60,11,56),(2,59,12,55),(3,58,9,54),(4,57,10,53),(5,17,62,14),(6,20,63,13),(7,19,64,16),(8,18,61,15),(21,43,28,39),(22,42,25,38),(23,41,26,37),(24,44,27,40),(29,51,35,47),(30,50,36,46),(31,49,33,45),(32,52,34,48)]])

56 conjugacy classes

class 1 2A···2O2P···2W4A···4H4I···4P8A···8P
order12···22···24···44···48···8
size11···14···42···24···42···2

56 irreducible representations

dim1111112222
type++++++++
imageC1C2C2C2C2C4D4D4D8SD16
kernelC22×D4⋊C4C2×D4⋊C4C22×C4⋊C4C23×C8D4×C23C22×D4C22×C4C24C23C23
# reps112111167188

Matrix representation of C22×D4⋊C4 in GL6(𝔽17)

1600000
010000
0016000
0001600
0000160
0000016
,
100000
0160000
0016000
0001600
0000160
0000016
,
100000
010000
0016000
0001600
000001
0000160
,
1600000
010000
001000
00161600
0000016
0000160
,
1600000
0160000
001200
00161600
0000125
000055

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16,0,0,0,0,0,0,12,5,0,0,0,0,5,5] >;

C22×D4⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times D_4\rtimes C_4
% in TeX

G:=Group("C2^2xD4:C4");
// GroupNames label

G:=SmallGroup(128,1622);
// by ID

G=gap.SmallGroup(128,1622);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e^-1=c^-1,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽